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FOREWORD

The Operations Research Center at the Massachusetts Institute of

Technology is an interdepartmental activity devoted to graduate education

and research in the field of operations research. The work of the Center

is supported, in part, by government contracts and grants. The work re-

ported herein was supported by the Office of Naval Research under Contract

No. N00014-75-C-0556.

Richard C. Larson

Jeremy F. Shapiro

Co-Directors

ABSTRACT

This paper presents a hierarchical approach to plan and schedule

production in a manufacturing environment that can be modelled as a

single stage process. Initially, the basic trade-offs inherent to

production planning decisions are represented by means of an aggregate

model, which is solved on a rolling horizon basis. Subsequently, the

first solution of the aggregate plan is disaggregated, considering

additional cost objectives and detailed demand constraints.

Several improvements in the methodology related to hierarchical

production planning are suggested. Special attention is given to

alternative disaggregation procedures, problems of infeasibilities, and

the treatment of high setup costs. Computational results, based on real

life data, are presented and discussed.
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1. INTRODUCTION

In this paper we will concentrate exclusively on the design of model-

based systems to support tactical and operational decisions pertinent to

production planning. Tactical decisions are concerned with the allocation

of the resources available for production purposes. Typical decisions are

the amounts of each product type to be produced in each period, the levels

of regular and overtime workforce to be used, specification of service

levels, inventory targets, machines capacities, etc. An appropriate

planning horizon for these decisions is a full seasonal cycle to capture

the fluctuations in demand due to seasonalities and promotions. The

length of the cycle is usually one year. To make effective tactical deci-

sions it is generally sufficient to consider aggregate data. The basic

operational decisions of production planning consist in establishing the

amount of each item that must be produced in each period and the correspond-

ing resources needed. Operational decisions are made subject to the limita-

tions imposed by the tactical level and require a high degree of detailed

information.

In many practical situations of batch processing systems, tactical and

operational decisions are taken by distinct managerial echelons. This

fact must be recognized by system designers if an implementation is to

succeed. Although production planning has attracted the attention of

operation researchers for a long time, the different nature of the two

classes of decisions mentioned above has been seldomly considered. Some

exceptions include the works of Holt, Modigliani, Muth and Simon [161,

Winters [27], Hax and Meal (15], Bitran and Hax [2], Shwimer [231, Newson

[21], and Zoller [28]. However, most publications encountered in the

literature either formulate the production planning problem at a detailed

level, [71,[8],[19],[201, or advocate an aggregate approach and give little
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insight into how to disaggregate the solutions, see [4],[5],[ll],[18], and

[251. The detailed formulation of the problem leads to a very large mathe-

matical programming problem which is very difficult to interact with, requires

demand data that can seLdomly be forecasted with an acceptable accuracy, and

is expensive to operate.

In this paper we present an improved version of the hierarchical proce-

dure for production planning suggested by Bitran and Hax [2] and provide

theoretical results supporting the method. To make this paper as self

sufficient as possible we briefly describe the hierarchical production

planning concept.

1.1 Hierarchical Production Planning

Hax and Meal introduced the concept of hierarchical production planning

in [15]. The method consists primarily of recognizing the differences

between tactical and operational decisions. The tactical decisions are

associated with aggregate production planning while the operational deci-

sions are an outcome of the disaggregation process.

Hax and Meal proposed the following levels of aggregation:

Items: are the end products delivered to customers.

Product Types: are groups of items having similar unit costs, direct costs

(excluding labor), holding costs per unit per period, productivities

(number of units that can be produced per unit of time), and season-

alities.

Families: are groups of items pertaining to a same product type and sharing

similar setups. That is, whenever a machine is prepared to produce

an item of a family, all other items in the same family can

also be produced with a minor change in setups.
Although we have adopted this three-level product structure in our
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work, the reader should realize that a specific disaggregation hierarchy

depends on the actual setting being considered.

An overview of hierarchical production planning is shown in Figure 1.1.

It applies to single stage batch production processes. An extension for

Multistage processes is given in [1]. As indicated in Figure 1.1, three

levels, paralleling the aggregation hierarchy, are recommended (boxes 1, 2,

and 3). The first is the product type level where aggregate plans for

product types are determined. The planning horizon is usually one year.

This level is concerned with tactical decisions. Only the amount of each

product type to be produced in the first period is passed to the family

level (box 2). Aggregate production plans are determined on a rollinF

horizon basis. That is, the planning horizon is maintained equal to one

year by deleting the last period and adding a new one. At the second level

the run quantity of each type is disaggregated to obtain the production

quantities of each family. These are passed to the item level (box 3) where

they are further disaggregated to determine the amount of each item to be

produced in the first period. It is important to notice that in the hier-

archical method detailed forecasts at the item level over the entire aggregate

p lanning horizon are not needed. As a consequence, the data collection

required is considerably smaller than in detailed formulations of the

production planning problem. Moreover, the fact that there are usually a

few numaber of product types justifies the use of sophisticated forecasting

techniques that would be prohibitively expensive to employ for thousands

of items. Since aggregate forecast tends to be more accurate than detailed

forecast, production plans generated by hierarchical planning tend to be

quite stable in the rolling horizon process.

Hax and Meal proposed a heuristic to perform the three levels (boxes 1,

2, and 3) in Figure 1.1. flitran and Ham formalized the hierarchical planning
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Read in last period's usage

Ia,
Update Inventory Status

(Physical Inventory, Amount on
Order, Backorders, Lost Sales,

Available Inventory)

Update demand forecasts, safety
stock. overstock limits, and

run out times

Determine effective demands
for each product type*

a Aggregate Plan for Types ()

(Aggregate Planning Reports)

(3)k
Item Disaggregation t

(Item Planning Reports)

Detailed Status Reports

Figure 1.1: Conceptual Overview of Hierarchical Planning System

For a discussion of effective demands, see Section 2.2.
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heuristic by suggesting the use of convex knapsack problems to disaggregate

the product type and families run quantities into families and item run

quantities, respectively.

The plan of the paper is as follows. In section 2 the algorithm

suggested by Bitran and Hax is briefly reviewed. In section 3 theoretical

results supporting the hierarchical production planning method are provided.

Three modifications to the algorithm in [23 are introduced in section 4.

Results of extensive computational experiments comparing several hierarchi-

cal procedures are given in section 5. Conclusions are presented in

section 6. Proofs of the theorems are presented in the appendices.



-6-

2. HIERARCHICAL PRODUCTION PLANNING - THE REGULAR KNAPSACK METHOD

The first formal system that represents our philosophy for hierarchical

production planning was proposed by Hax and Meal [151. A formalization of

that approach was developed by Bitran and Hax [2]. In this section we will

summarize the basic features of the Bitran and Hax approach, which will be

referred to as the Regular Knapsack Method (RKM). The origin of this name

is due to the fact that the family and item disaggregation subsystems are

both represented by means of Knapsack problems.

2.1 Aggregate Production Planning for Product Types

Aggregate production planning, the highest level of planning in hier-

archical production planning systems, addresses product type scheduling.

The following linear program provides a simple representation of that

planning problem.

Problem (P)
I T T

minimize Z Z (citXit + h itlit) + E (rtR t + ot0)
il it=l t=l

subject to I itl + Xit - Iit dit i=l,2,...,I; t=!,?,...,T.

I

E miX it< R + 0 t=l,2,...,T.
i=l

Rt  < (rm) t  t-l,2,.....T.
t t

0t  < (om)t ~ , ... T

XitIitRt9Ot > i=l,2,...,I; t=l,2,...,T.

The decision variables of the moeel are: Xit, the number of units to

be produced of type i during period t; I i t , the number of units of inventory

of type i left over at the end of period t; and Rt and Or, the regular hours
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and the overtime hours used during period t, respectively.

The parameters of the model are: T, the length of the planning horizon;

c i, the unit production cost (excluding labor); hit, the inventory carrying

cost per unit per period; rt and ot, the cost per manhour of regular labor

and of ove-time labor; (rm)t and (om) t, the total availability of regular

and overtime hours in period t, respectively; mi, the hours required to

produce one unit of product type i; and dit, the effective demand for

type i during period t. (A definition of effective demand is given below.)

For simplicity of presentation, we have not incorporated in Problem (P)

hiring and firing, production lead time, backorders and other features

that can be easily considered. Moreover, the aggregate Problem (P) need

not necessarily be formulated as a linear programming problem. Any

aggregate production planning model may be used as long as it adequately

represents the practical setting under consideration. Discussions of

aggregate models can be found in [12],[6],[22], and [17]. Problem (P)

is solved with a rolling horizon of length T. At the end of every time

period, new information becomes available and is used to update the values

of the parameters of the model, particular demand forecasts, and the result-

ing values of the decision variables. Due to the uncertainties present

in the planning process, only first period results of the aggregate problem

are actually implemented.

2.2 Effective Demand

As is shown in Bitran and Hax [21, the use of demand, instead of

effective demand, may lead to an aggregate solution of Problem (P) which

cannot be disaggregated. The effective demand represents net requirements

which cannot be satisfied from initial available inventory. More precisely,

let Iko represent the initial inventory of item k, and dkt denote the demand

I,-L__
- _ __ ___ __ ___ _.__
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of item k in period t. The effective demands of item k are defined as:

t - i
max(O, . d - I ) if d 0 (define d =0) and
dk ko kt-1 ko

dkt

(t=l,2,..,T) dkt otherwise.

Theve computations force one to provide detailed forecasts for each item

until the initial inventory is exhausted. The effective demand of product

type i is defined as the sum of the effective demands of all of its items,

i.e.:

d d
kEK(i) kt

where K(i) is the set of all items belonging to product type i.

Notice that since, in Problem (P), dt repiesents effective demand it

follows that the initial inventory of every product type i, Iio is equal to

zero.

2.3 A Family Disaggregation Model

Since only the first period's results of the aggregate production problems

are to be implemented, the family disaggregation model attempts to allocate

the production quantities Xil of each product type to the families belonging

to that type. The disaggregation is performed using, for each product type i,

the following continuous knapsack problem which determines run quantities

for each family attempting to minimize the total setup cost among families.

Problem (Pi)

Minimize Z

jEJ(0) Yjl

subject to E Y = XJrJ(i) YJl Xil

kb < Y < ub JEJ(i)
=i •I !i

2 A
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where s. and d denote the setup cost and annual demand of family J. The

variables Yjl represent the quantity to be produced of each family j during

period 1. The upper bound ub j and lower bound Zb j are computed as follows:

ub = max(O, OS - a ji ) and

Zb j = max(0, djl -aijl + ss j)

where osjl, djl, aijl and ss j denote respectively the overstock limit,

the demand, the available inventory, and the safety stcck of family j in

period 1. J(i) is the set of families in product type i that trigger in

period 1, i.e., it is the set of indices j such that djl - aiji + SSjl > 0.

The objective function of Problem (Pi) assumes that the family run

quantities are proportional to the setup cost and the annual demand for a

given family. This assumption, which is the basis of the economic order

quantity formulation, tends to minimize the average annual setup cost. In

section 4.1 this objective function will be reviewed. An efficient algorithm

to solve Problem (Pi) is given in Bitran and Hax [2].

2.4 The Item Disaggregation Model

Once the quantities Y have been determined, one needs to disaggre-

gate them among the items belonging to each family J. For the current

planning period, all costs have already been determined by the two previous

stages in the hierarchical process. However, the feasible solution chosen

will establish the intial conditions of the next period and will affect

future costs. In order to save setups in future periods, it seems reason-

able to distribute the family run quantity among its items in such a way

that each item's runout time coincides with the runout time of the family.

This can be accomplished by the following continuous knapsack problem.

-7



Problem (QJ) rYJ + E (al-ss) 881 2
Minimize r kEK(j) ilkl Zk + aik

kEK(j) [EJ dkl  dkl

subject to E = Yk jkcK(J) z k

Zb <Z < bkK)kl =Zkl Ubkl kcK(J)

The variables Z denote the production quantity of item k in family J.

K(j) is the set of items in family j and the parametes dkl , aikl, aSkl'

4Lki, auJ ubkl represent for item k the same quantities that were discussed

for family j in Problem (Pi). An efficient algorithm to solve Problem (Qj)

is presented in [2].

if_ _ _ _ _ _ _ _ _ _ _ _ _ _

[ ~ - - _ _ _ _ _ __ _ _ _ _ _ _
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3. COMPARING DISAGGREGATION PROCEDURES

An important determinant for the performance of hierarchical production

planning systems is the procedure used to disaggregate earlier decisions at

each hierarchical level. The knapsack approach just presented identifies one

possible alternative for hierarchical designs. The knapsack nature of the

subproblems is very appealing because of its great computational advantage.

However, it is imperitive that we gain some theoretical understanding of

the impact of different disaggregation schemes on the production planning

costs. Such an understanding will help us in evaluating and comparing

alternative disaggregation mechanisms, and in judging the improvements to

be obtained by introducing modifications to the RKM.

This section will describe two fundamental theorems which provide

important insights into the strengths of various disaggregation methodolo-

gies. Let the superscript u denote a generic disaggregation procedure

applied to Problem (P). The effective demands can be expressed as a funczion

of the real demands (or forecasted demands) and the disaggregation procedure

used as follows:

d = di -gU for i=i,2,...,I and t-1,2,...,T.
it it i

The quantity gut represents the total contribution of all items belonging

to product type i to determine the effective demand of that product type

in period t, using the disaggregation procedure u. Different disaggregation

procedures will affect the initial inventory of each item and, thus, the
T

u
effective demand of the product types. Therefore, E gut, T-l....,T indicate

t.1
the suim of the real or forecasted demands of the items in product type i that

can be satisfied directly by the initial inventory up to period T.

Problem (P) can be rewritten as a function of disaggregation u as

follows:

• ,____ ______________
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Problem (PU)

I T T
min E E (C tXt + hI ) + Eo t  

)  
u

i=l t=1 
t=l

I T-1 T
+ E E ht u

i=l t=l 
k=t+l

subject to li + X - I = d t =1'2"'"I; t1,2,...,T.
it-I it -i t it i

I

m Xu < Ru +0u t=l,2,...,T.
i it t t

Ru < (rm) t=l,2,... ,T.
t t

Ou  < (o,) t=l,2,... ,T.t = t

Xu  u Ru Ou  >

it' itR t0 t - 0

where the last term in the objective function represents the holding enmt

of the initial inventory of all product types, which is a function of the

disaggregation procedure used. This term has been omitted in Problem (P)

since, given a disaggregation procedure, the initial inventory cost is

constant. However, it is important to include it in Problem (pU) because

our purpose is to compare the performance of various disaggregation proce-

dures.

The quantities git satisfy the following condition

T

t=l i io

where lio is the initial inventory of product type i.

A disaggregation procedure u is said to be feasible if Problem (PU)

is feasible.

I
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Theorem 3.1: Let u1 and u2 be two generic feasible disaggregation proce-

dures such that

t uI  t u2Egik > E g ik i-1,2,...,1; t=1,2 ....,T. (3.1)

k-1 k-i

Then z < z

The proof of this theorem is provided in Appendix 1, and its implica-

tions are discussed below.

Define u=O to be the case where g = 1 and = 0,

t-2,... ,T. This inrklies the allocation of all initial inventory to the

first period of the planning horizon, even if the demands during that period
T u.

become negative. Moreover, since g 1 Z g J for i=1,2,...,I and
il io k=1li

for every feasible disaggregation u,, it follows that

t t U.F o > X g I
l gik = k

1=1 k=l

for every t=l,2,...,t; i=1,2,...,l and every u. Hence, if we let z0 be

the optimal value of problem (P0 ) corresponding to u=0 the corollary below

is directly implied by theorem 3.1.

u

Corollary 3.1: Assume (P0 ) is feasible. Then, z° < z J for every feasible

disaggregation uj.

Theorem 3.1 provides a mechanism for comparing two disaggregation

procedures u1 and u2 . If conditions 3.1 are met, u1 is preferred to u2.

In this sense, conditions 3.1 can be viewed as establishing a partial order

structure in the space of feasible disaggregations.

The key question to ask at this point is whether a feasible disaggre-

gation procedure exists which is optimal, i.e., that attains the lower

0
bound z . The answer to the question is provided by Theorem 3.2 below which

p.i
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establishes the conditions under which the disaggregation procedure known

as "Equalization of Run Out Times" (EROT) becomes optimal.

EROT allocates the production amount determined at the aggregate

planning level for a given product type, Xti, in such a way as to equal-

ize the run out times of all the items belonging to that type. The run

out time for a product type is defined as the nuber of periods (possibly

a fractional number) that will elapse until the inventory of that item

reaches the safety stock level.

Theorem 3.2: Let uE denote the EROT disaggregation procedure. Then, if

all disaggregations are made with the EROT disaggregation method, if

Iin > 0 for all product types, and if the aggregate product type problem

(Po) is feasible it follows that

0 uE

The proof to this theorem is provided in Appendix 2.

ReEbiniziag that the aggregate plan ignores setup costs, there are

two important conclusions that are derived from Theorems 3.1 and 3.2.

First, a qualitative interpretation of Theorem 3.1 is that the

larger the gat's are for small values of t, the better it is in terms

of total primary costs. That is, the best disaggregation scheme must

allocate the initial inventory of e*ch product type uniformly, in

terms of runout time, among all its items. This interpretation makes

clear that the EROT disaggregation is optimal, as proved in Theorem 3.2.

however, when setup costs grow in importance it is desirable to allocate

larger inventories to the items that have the highest setup costs. The

motivation for a non-uniform allocation of inventories among items in a

product type is the desire to minimize total setup costs. Therefore, we

face a tradeoff between using the EROT disaggregation procedure and coae-

-7- V.-'
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quently minimizing total primary costs while incurring high setup costs,

and choosing a disaggregation that allocates the inventories in a manner

that considers setup cost levels reducing these costs while incurring higher

primary costs. Our computational experience, to be discussed in section 5,

has shown that when the total setup costs are 5% or less of the total produc-

tion costs, EROT performs quite efficiently. The RKM, enhanced by modifica-

tions to be introduced in the next section, is one of those methodologies

that are more effective than EROT when setup costs are significant.

Second, EROT is a "myopic" disaggregation rule. The aggregate planning

model covers a long planning horizon, usually a full year, to allow for an

efficient allocation of facilities, manpower, and inventory under fluctuating

demand conditions. However, once the aggregate plan has been established,

we need just to look for a few periods ahead (the length of which is repre-

sented by the runout time) to determine an appropriate disaggregation.

Although EROT is an optimal disaggregation procedure only under the absence

of setup costs, the qualitative implications of this approach support the

essence of hierarchical planning, that advocates the use of long planning

horizons at the highest planning level, while drastically decreasing the

planning horizons at the lower planning levels.

f _ _ _ _ _ _ _ __ _ _
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4. MOlIFICATIONS INTRODUCED IN THE REGULAR KNAPSACK METHOD

The concerns about the performance of disaggregation procedures under

high setup costs, and the myopic nature of disaggregation rules, led us to

incorporate modifications in the Regular Knapsack Method. Computational

results evaluating the performance of EROT, RKM, and the modified Knapsack

will be presented in section 5. This section will cover three important

changes made to RKM.

4.1 A Myopic Objective Formulation for the Family Subproblem

The objective function proposed originally in the RKM (see section 2.3)

was:

Minimize E Y
JEJ(i) jl

The definition of d., covering demand over the entire planning horizon,
j

contradicts the myopic nature of the disaggregation process referred to in

the previous section. As a consequence, the resulting solutions YJl of

Problem (Pi) will not be sensitive to the difference among the demand

patterns of the families belonging to a given product type in the immediate

future. Inspired by the results of Theorem 3.1 and 3.2, d was redefined

as a demand for family j over the run out time of its corresponding product

type; that is to say, over the time interval that would exhaust the produc-

tion quantity Xil of the product type i containing family j when that quan-

tity is disaggregated according to the EROT scheme.

4.2 The Look Ahead Feasibility Rule

Another important problem that led us into modifying the RKM was the

generation of infeasibilities that could be introduced in the aggregate

problem by the disaggregation procedure used. Golovin [10] detected this

"---'7 ---- -- -------,--___ ___-_ __ __
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problem and illustrated its occurance by means of a numerical example.

Gabbay [9] suggested a set of constraints to be introduced in the family

subproblem that would provide necessary and sufficient conditions for the

existence of feasible disaggregations over the entire planning horizons.

His results, however, were restricted to the static case; that is, when

Problem (P) is solved only at the beginning of the first period and no

rolling horizon is used. Moreover, Gabbay's constraints destroy the s~ecial

knapsack structure of the family subproblems, thus eliminating the c)inpu-

tational advantages of such a structure.

To overcome the potential presence of infeasibilities, we developed

a simple rule that looks ahead just one period, attempting to prevent the

next period's disaggregation from becoming infeasible. We designated this

rule as the "Look Ahead Feasibility Rule". The essence of the computations

needed to carry out this rule is presented in Figure 4.1.

A numerical example might facilitate an understanding of the applica-

tions of this rule.

Assume that the aggregate schedule for product type P1, composed by

families Fl and F2, is:

Product type P1: Initial Inventory Production Demand Ending Inventory

Period 1 10 units 25 units 20 units 15 units

Period 2 15 units 5 units 20 units 0 units

Demand and inventory data for families Fl and F2 are as follows:

F1 F2

Initial inventory in period 1 0 units 10 units

Demand in period 1 10 units 10 units

Demand in period 2 10 units 10 units

The inventory figures do not include safety stocks.

'V -7 ,_ _ _ _ _ _ _ _ ___,
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product 

typ 
e

< Are all families in 
the product type in the > Yes

- list of families that will be produced in the

present period?

Let Q, = planned type production for the present
period plus the sum of the available inventories
minus the safety stocks of the families in the
list of those that will be produced in the present
period minus the sum of the demands, in the present
period, of the families that will be produced.

Let Q2 = 01 minus the sum of the demands in the
next period of the families that are in the list
of those that will be produced in the present
period.

Set the lower bound for the new Is Q2 greater than the
family equal to the minimum planned inventory of the
between its upper bound and 02  product type for the endminus the planning inventory of the next period (as

at the end of the next period given by the last solution /

for the product type.k of the poduct type proble)?/

Add another family is the

product type, to the list

of those that will be -4it
produced in the present
period.

Figure 4.1: The Look Ahead Feasibility Rule

-9 - -- -- --- " --- .....
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According to this data, only Fl will trigger in the first period.

Therefore, under RKM, only Fl will be produced and its production quantity

will be 25 units (for simplicity, we are assuming no upper bounds for both

families). In the second period, only F2 will trigger, since its initial

inventory will be zero units and its demand will be 10 units. However,

since the production scheduled for PI is 5 units, a shortage of 5 units for

family 2 will results. If the Look Ahead routine in Figure 4.1 is applied,

the value of Q1wlbeQ=2501=15adQ2= 15-10 = 5. The planned

inventory for the product type P1 at the end of period 2 will be zero units.

Hence, Q2= 5 > 0. Therefore, the "look ahead feasibility rule" adds to

the list of families to be produced in the present period (period 1), composed

just by Fl, the family F2 with a lower bound of 5 units for its production

quantity. This modification will eliminate the infeasibility created by

RICH. It is important to note that this adjustment routine does not preclude

the use of the efficient knapsack algorithm to solve the family subprobleri (Pi).

4.3 Modification of the Regular Knapsack Method for the Case of High Setup Costs

We have already addressed the role of setup costs in hierarchical produc-

tion planning systems. The initial approaches introduced by Hax and Meal (15]

and Bitram and Hax [2] ignore the setup costs at the product type level, and

include them in the decision rules at the family level. The resulting

algorithms proved to be effective when setup costs did not exceed 10 percent of

the total production costs (for further discussion of this subject see [21,(141).

The issues that still deserve consideration are those cases in which

setup costs represented a percentage higher than 15 of the total production

cost. Figure 4.2 describes a subroutine that we introduced to the RICH for

those situations with fairly high setup costs. This routine can be easily

modified to allow for managerial inputs which reflect their Judgment regard-
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For each product type i
solve the family subproblem

(Pi)

For each family J, compute the integer number of periods, N(J),
of demand that can be satisfied with the production quantity yji
allocated to the family by subproblem (Pi).

For each family J, compute the "ideal production quantity", using
Silver-Meal lot sizing procedure [24], and the associated integer
number of periods, M(j), of demand that can be satisfied by this
production quantity.

For each family J, free the production capacity corresponding to
producing more than min [N(j); M(j)] periods of demand.

Let CAP denote the sum of the production capacities freed by each
family independently of the product type it belongs to.

Allocate the capacity CAP to the family(ies) in quantities equal
to full periods of demand, whenever possible, in such a way to
"rminimize the total production costs".

4
If the aggregate problem (P) did not use all regular hours of
production in the present period, treat this extra capacity as
free capacity and allocate it to some family(ies) as long as it
has a positive impact on the total costs.

Figure 4.2: Routine to Adapt the RKM for the Case of High Setup Costs

t , - !-- 7 . . .... .. . .. . .. ...... .
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ing changes to be incorporated in the aggregate schedule in order to save

setup costs. These changes will invariably represent tradeoffs between

the linear costs identified in the aggregate production level and the setup

costs incurred at the family level.

The routine briefly described in Figure 4.2 works as follows. Ini-ially

the family subproblems (Pi) are solved and the production quantities Yjl

for each family are obtained. The integer number of periods of demand, or

each family J, that can be satisfied by YJl is computed and denoted by N,J).

Next, Silver-Meal's lot sizing method [241 is applied, for each family j.

considering the stream of demands starting with the present period. The

otuput of the method is denoted by L(j) and we refer to it as the ideal

quantity to be produced for family j in the present period. We have chosen

Silver-Meal's procedure instead of the Wagner-Whitin [261 algorithm because

the first is much more efficient computationally and gives satisfactory

results (see [221 for a comparison of the two methods). The next step is

to compute the integer number M(j) of periods of demand that can be totally

satisfied by L(j). It is important to note that N(j), L(j), and M(j) are

computed considering effective family demands. For each family, the differ-

ence between the capacity allocated by the family subproblems and the

capacity needed to cover the demand for more than minimum [M(J),N(j)] periods

is considered freed. The sum of the freed capacities of each family,

independently of the product type to which it belongs, is denoted by Z.

After removing the free capacity from each family, we denote the remaining

production quantity by Q(J). All families are ordered according to
1 sjdj hiQ(i)

"increasing marginal costs", MC(J) = - -.1 --( 2 , where s is

the setup cost for family J, d is the demand of family j over the myopic

planning horizon (as defined in section 4.1), and hi is the cost of holding

one unit in stock for one period. The capacity Z is then allocated to the
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families in quantities equal to full periods of demand (whenever possible,

.,1* t. Me* V e
starting with the one with minimum MC(j)). After allocating one period of

demand to a family J, its marginal cost is recomputed witi Q(j) increased

by the corresponding amount. If after allocating the capacity Z there

exists at least one family with negative marginal cost, and there are

regular hours of production available, that the aggregate problem (P) did

not use for the present period, the routine allocates the time available

to those families. We would like to point out that variants of the marginal

criterion, MC(j), have been tested and none performed better than the one

reported here. This approach effectively alters the aggregate schedule as

long as the expected savings in setup costs more than compensate for

changes in the costs considered by the aggregate schedule.

4' .
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5. COMPUTATIONAL RESULTS

A series of experiments were conducted to examine the performance of

the modifications introduced in the hierarchical knapsack method and to

compare this method with others. The data used for these tests was taken

from a manufacturer of rubber tires. The product structure characteristics,

together with relevant information, are given in Figure 5.1. The twelve

items were partitioned into two product types P1 and P2. Product type P1

is composed by two families PlFl and P2F2. The second product type is

partitioned into three families P2Fl, P2F2, and P2F3. Table 5.1 exhibits

the demand pattern for both product types.

The experiments were divided in two sets. In the first set, they

consisted of applying the production planning methods to a full year of

simulated plant operations. Production decisions were made every four -eeks.

The model was then updated using a one year planning horizon. The process

was repeated thirteen times. At the end of the simulation, total setup costs,

inventory holding costs, overtime costs, and backorders were calculated.

Direct manufacturing costs and regular work force costs were omitted because

they were considered fixed costs for this applications.

The methods compared are:

1) The RKM modified by considering the myopic horizon for the demand at

the family level (subsection 4.1) and the "look ahead feasibility

rule" (subsection 4.2). In Table 5.2 this method corresponds to

the column K12.

2) The RKM with the three modifications, i.e., the modifications considered

in 1) above, plus the adjustment routine for high setup costs

(subsection 4.3). In Table 5.2 this method corresponds to the

column K123.

3) EROT which consists in disaggregating the product type production quanti-

I I _ _ _ _ _ _ _ _ _ _ _ _ _ _
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P1 P2

PIFi P2F2 P2Fl P2F2 P2F3

/I\ I\ I\ I\ I
11 12 13 Ii 12 I 12 I1 12 I 12

Family setup cost - 90 Family setup cost - $120

Holding cost - $.31/unit a month Holding cost - $.40/unit a month

Overtime cost - $9.5/hour Overtime cost = $9.5/hour

Productivity factor = .1 hr/unit Productivity factor = .2 hrs/unit

Production lead time = 1 month Production lead time 1 month

Regular Workforce Costs and Unit Production Costs are considered fixed costs.

Total Regular Worforce - 2000 hrs/month

Total Overtime Workforce = 1200 hrs/month

Figure 5.1: Product Structure and Relevant Information

Table 5.1: Demand Patterns of Product Types

Time Period Product Type 1 Product Type 2
t P1 P2

1 12,736 6,174
2 7,813 2,855
3 0 4,023
4 0 4,860
5 0 7,131
6 0 9,665
7 1,545 17,603
8 7,895 14,276
9 10,982 11,706
10 15,782 15,056
11 16,870 8,232
12 15,870 7,880
13 9,878 10.762

TOTAL 99,371 120,223

4f _
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ties directly into item quantities using as a criterion the

equalization of the run out times, i.e., the production quantity

of each product type is allocated among the items in such a way

that they last for an equal number of periods (assuming perfect

forecast). In Table 5.2 this method corresponds to the column

EROT.

Seventy two experiments were performed. The base case corresponds to

the data taken from the manufacturer of rubber tires. The data for the

other seventy one experiments was constructed by perturbing the data of the

base case in order to explore the effects of the production capacity,

magnitude, and relative values of the setup costs and forecast errors.

Global statistics will be provided for the seventy two experiments. Due

to space limitations, we report in Table 5.2 the results of seventeen

problems solved. This subset is representative of the results obtained

throughout the seventy two experiments performed in so far as identifying

meaningful combinations of available capacities, forecast errors, and

setup costs. For the purpose of comparison, we have also solved the seven-

teen problems by the RKN. Tho corresponding results are shown in cotwonn

RKM in Table 5.2. The data structure used in the computational experiments

is given below.

Capacity (3 cases)

Cl 2000 hrs/month regular time

C2 2500 hrs/month regular time

C3 1600 hrs/month regular time

Overtime is 60% of the regular hours in all three cases.
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Forecast Errors (3 cases)

Fl zero forecast error

F2 .02 + Ol1.1 3 with no bias

F3 .02 + .Olt . all positive forecast errors

where t denotes the period in the planning horizon of the

aggregate problem. F2 and F3 assume that the forecast error

increases in absolute value as t increases. That is, the

further away a period is, the higher the average absolute

value of the forecast error is. For F2, the probabilities of

positive and negative forecast errors were assumed to be

equal to .5.

Setup Costs (8 cases)

Product Product
type 1 type 2

Sl Family 1 90 110
Sl Family 2 90 110

Family 3 - 110

Family 1 900 1100

S2 Family 2 900 1100
*~Family 3 - 1100

Family 1 900 110
S3 Family 2 1800 110

Family 3 - 110

Family 1 500 1000
S4 Family 2 2000 100

Family 3 - 50

Family 1 5000 400
S5 Family 2 50 400

Family 3 - 1000

Family 1 3000 110
S6 Family 2 4000 110

Family 3 - 110

Family 1 6000 400
S7 Family 2 4500 5000

Family 3 - 3000

S8 Family 1 300 300
S8 Family 2 90 100

Family 3 - 400
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The notation used in Table 5.2 is as follows: CiFjSk indicates that

the capacity data used is Ci, the forecast error structure if Fj, and the

setup cost structure is Sk. CIFISi corresponds to the base case.

Some conclusions that can be drawn from the computational experiments

are:

1) Independent of capacity limitations and forecast errors, under low setup

costs, K123 does not perform as effectively as K12. However, as

expected, under high setup costs the routine is effective and

should be used.

2) Although the backorders observed are not significant in the experintents

performed, they are always lower in K12 and K123 than in the FROT

method. In all cases with tight capacity and forecast error

(either biased or unbiased) the EROT procedure carried backorders.

3) All three methods react as expected to high forecast errors and caDacity

constraints.

4) The cases in which the EROT procedure performed better than the other two

methods were characterized by extremely low setup costs. However,

the improvement over K12 is not significant even in those fe7q c-qes.

5) In thirteen out of the seventeen cases, K12 outperformed RKM in terms of

total cost. In the four cases where the reverse occurs, the

regular hierarchical knapsack method presents a significant number

of backorders.

6) It is interesting to observe that except in one case with significant

forecast error (C3F2S7), the sum of holding and overtime costs are

smaller for the EROT than for other methods. This fact is a

direct consequence of Theorem 3.2.

To test if the observed differences in the total costs obtained with

the four methods are statistically significant, we performed Wilcoxin's

L 7W:-~---~----- ______________ ____
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Table 5.2: A Comparison of the Costs Resulting When the Various Approaches
Were Tested on Sample Points

CASE . COST TYPE RKM K12 K123 EROT BEST M.I.P.
SOLUTION FOUND

Base Holding 29920 30651 45476 29923
Case Setup 5580 5360 5030 5910

ClFlSl Overtime 81684 81113 72319 81681

Total 117184 117120 122825 117514 115616

Setup/Total 4.8% 4.6% 4.1% 5.0%
Z Difference iin% ifrneit 1.4 1.3 6.2 1.6
Cost from M.I.P.

Backorders - - - -

ClFlS8 Holding 31221 33195 30739 29923
Setup 11910 12610 12210 13910
Overtime 82382 79302 81682 81682

Total 125513 125107 124631 125515 122790

Setup/Total 9.5% 10.1% 9.q% 11.1%

% Difference in
Cost from M.I.P.

Backorders 71 units - - -

CIFIS5 Holding 31922 32028 35921 29923
Setup 67050 67050 54650 68850
Overtime 81682 80926 79714 81681

Total 180654 180004 170285 180454 165550

Setup/Total 37.1% 37.2% 32.1% 38.2%

% Difference in
Cost from M.I.P.

Backorders 4 units - - -

C2FlS5 Holding 13581 14042 47784 13584
Setup 67850 67050 53850 68850
Overtime 48577 48878 24681 47578

Total 130010 129970 126315 130012 124236

Setup/Total 52.2% 51.6% 42.6% 53.0%

% Difference in 4.9 4.6 1.7 4.6
Cost from M.I.P.

Backorders - - - -

'Af -I
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CASE COST TYPE RKM K12 K123 EROT

ClF2Sl Holding 64380 65473 65386 63806

Setup 4740 5070 5030 5730
Overtime 80957 78907 78657 79709

Total 150077 149450 152073 149245

Setup/Total 3.2 3.4 3.3 3.8

Backorders 5 units - - -

ClF3S1 Holding 83034 86315 94553 78197
Setup 4300 5180 5070 5910
Overtime 88396 83491 80303 90412

Total 175730 174986 179926 174519

Setup/Total 2.5 3.0 2.8 3.4

Backorders - - - -

C1F3S7 Holding 85343 90295 89088 78197
Setup 194000 171300 152200 203700
Overtime 88753 77729 85709 90412

Total 368096 339324 326997 372309

Setup/Total 52.7 50.5 46.5 54.7

Backorders 6 units - - -

C2F1S1 Holding 13584 13584 21849 13584
Setup 5910 5910 5310 5910
Overtime 48878 47578 42237 47578

Total 68371 67072 68396 67072

Setup/Total 8.6 8.8 7.8 8.8

Backorders - - - -

C2F1S7 Holding 13583 14066 59739 13584
Setup 200500 195300 134100 203700
Overtime 48878 48878 28047 47578

Total 262961 258244 221881 264862

Setup/Total 76.2 75.6 60.4 74.0

Backorders - - -



-30-

CASE COST TYPE RKM K12 K123 EROT

C2F2S1 Holding 49856 49856 53721 49856
Setup 5730 5730 5400 5910
Overtime 50269 48523 47503 48523

Total 105855 104109 106624 104289

Setup/Total 5.4 5.5 5.1 5.7

Backorders - - - -

C3FlS1 Holding 73016 76157 82455 77584
Setup 3930 4480 4480 5910
Overtime 118560 117326 111320 112560

Total 195506 197963 198255 196054

Setup/Total 2.0 2.3 2.3 3.n

Backorders 5522 units - - -

C3F1S7 Holding 71584 92752 92678 77584
Setup 198500 192700 172100 203700
Overtime 118560 98960 99830 112560

Total 388645 384412 364608 393844

Setup/Total 51.1 50.1 47.2 51.7

Backorders 6942 units - - -

C3F2S1 Holding 84620 100304 106213 80986
Setup 4300 4920 4810 5910
Overtime 118560 92930 88600 108243

Total 207480 198154 199623 195139

Setup/Total 2.1 2.5 2.4 3.0

Backorders 8159 units 301 units 301 units 1412 units

C3F2S7 Holding 84842 97526 108409 82986
Setup 202900 195300 178700 203700
Overtime 118560 91634 91450 108243

Total 406302 384460 378559 392929

Setup/Total 49.9 50.8 47.2 51.8

Backorders 6178 units - - -
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CASE COST TYPE RKM K12 K123 EROT

C3F3Sl Holding 87030 120364 117426 86926
Setup 4300 4920 4920 5910
Overtime 118560 87192 90257 118531

Total 209900 212476 212603 211367

Setup/Total 2.1 2.3 2.3 1.9

Backorders 10302 units - - -

C3F3S7 Holding 86570 120349 145205 86926
Setup 190600 188800 174700 203700
Overtime 118559 92219 74385 118531

Total 395729 400368 394290 409157

Setup/Total 48.2 47.2 44.3 49.S

Backorders 10158 units - - -

C3F1S5 Holding 71584 90084 90826 77584
Setup 60050 50450 54650 68850
Overtime 118559 104864 100560 112560

Total 250193 255398 246038 258994

Setup/Total 24.0 19.8 22.2 26.6

Backorders 6942 units - - -

CODE: Holding Cost - dollars
Setup Cost - dollars
Overtime Cost - dollars
Total Cost - dollars
Setup/Total - percentage
Backordera - units
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signed rank test. The test was used to pairwise compare the methods. The

null hypothesis is that the total costs of the first approach are less than

or equal to those of the second. Table 5.3 shows the results obtained

for the Wilcoxon's test. WI is the Wilcoxon statistics and a is its standard

deviation.

Table 5.3: Results Obtained for the Wilcoxon's Test

Confidence with
which null hypo-
thesis can be

Methods Compared Wilcoxon Statistics Sample Size rejec ted

RKM vs. K12 WI = 1.81o 17 96,

RKM vs. K123 WI - 1.900 17 97"

K12 vs. K123 WI = 5.36a 72 >99%

EROT vs. K123 WI = 5.530 72 >99

The Wilcoxon statistics indicate that overall, the adjusted knipspc"- i Tith

feedback is superior to all other approaches. However, our detailed analysis

suggests that if the setup costs are very small, i.e., less than InT of th-

total cost, the feedback algorithm should not be used.

The second set of experiments consisted in solving a selected sample of

the seventy two problems as mixed integer programming problems (MIP). The

formulation of the production planning problems as MIP's can be seen as an

optimal representation. The four problems shown in Table 5.4 were solved

using the Land and Powell package on the computer Prime 400 at M.I.T.

Unfortunately, although each problem contains only sixty five zero-one

variables, no "true optimal" solution was found within forty hours of connect

time for each of the four problems. In Table 5.4 we indicate the best solu-

tion available at time of interruption of the computer programs. Due to the

poor performance of the mixed integer package we limited the experiments to

- . -I w- - -
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only four problems which were solved just once (rather than on a rolling

horizon basis). This last fact favors the MIP formulations. To facilitate

the comparison between the methods, the results corresponding to the four

problems obtained in Table 5.2 for the RKM, K12, K123, and EROT algorithms are

repeated in Table 5.4.

Table 5.4: Total Costs

ClFlSl ClFS5 ClFlS8 C2FS5

RKM 117184 180654 125513 130010

K12 117120 180004 125107 129970

K123 122825 170285 124631 126315

EROT 117514 180454 125515 130012
Best MIPsti 115616 165550 122790 124236Soiut on

The results in Table 5.4 indicate that when the setup costs are less

than 5% of total costs and K12 is used, or when the setup costs are preater

than 5% and K123 is used, the total annual costs were never more than 3%

greater than the best MIP solution found after forty hours of connect time.

Finally we point out that none of the seventy two problems solved by the

RKM, K12, K123, and EROT algorithms on a rolling horizon basis, i.e.

solved thirteen times over the horizon of one year, exceeded ten minutes of

connect time on the M.I.T. computer Prime 400.

I

LL..o
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6. CONCLUSIONS

The experimentation reported herein tends to confirm our belief that

hierarchical planning systems provide a very effective alternative for

supporting production planning decisions at a tactical and operational

level. When contrasted with a mixed integer programming formulation, hier-

archical planning methods produce near optimal solutions with significantly

smaller computational efforts and data collection requirements. The

hierarchical planning approach represents a feasible alternative for the

solution of large scale real life problems which will be unthinkable to

tackle with an M.I.P. based model. Moreover, and most important from a

pragmatic point of view, the hierarchical approach parallels the hierarchy of

production planning decisions within the firm.

From a methodological point of view, our experiments seem to indicate

that the modifications introduced to the Regular Knapsack Method clearly

improve the performance of previous algorithms. The K123 method, under the

wide variety of situations tested, outperforms statistically all other

methodological alternatives considered. However, a closer examination of

those cases where setup costs account for less than ten percent of the total

production cost indicates that K12 or EROT might be preferred over K123.

EROT and 1K12 tend to perform quite closely under low setup cost conditions.
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APPENDIX 1: PROOF OF THEOREM 3.1

Theorem 3.1: Let u and u2 be two generic feasible disaggregation proce-

dures such that

t uI  t u2E g k Z gk i=1,2,....I; t=,2,...,T. (3.1)

k=l k=l
u1  u2

Then z 1< z

u2 u 2u 2u u 2Proof: Let (X ,I ,R 2,0 ) be a feasible solution of (P . Hence,

uI  u R u2  oU u u u2  t uI  t u2
u1 u2 u1 U2 u1 u2 u1 u2 t U1 t U 2

Xit =X Ri = R t = 0 t2 and it Iit + r _ g
k=l k=l

i=1,2,...,I; t-1,2,...,T is feasible in (PU). Moreover the objective function

value of (P u l) for this feasible solution is:

u I T u u1  T u1  u1  I T-1 T u1
z < E Z (ci.t X +hi I it + t (rtR t +oO t  ) + E Z h.it Z p =

i=l t=l t=l i=l t=l k-t+l

I T u2  u 2  T u2  u 2

E E (cit Xt+h itit + Z (rtRt +oO t  ) +
i=l t=l t=l

I T t u1 t u2  I T-1 T uI
Ekl ik Egik)+ E E h i

i=l t kI i=l tl i  k=t+l

I T u2  u2  T u2  u2  I T-1 T u2
E(citXit +hitit ) + E (rtR t +ot0t ) + E E h iiki-l t=l t=l i.1 t=lh i  k-t4-1

I T-1 T u2  I T t U2  I T t u

E E h it E g 2EEh it E 9 .k+ E E hitEp ik~
i-1 t=l k=t+l i-l t=l k=1 i-i t1 k-l

I T-1 T u1

E Ehi ik
i-1 t-1 k-t+l

I T u2  u2  T u2  u2  I T-1 T u2
2 E (citXit +hitIit) + E (rtRt +otO t  + Z hit g
ilt-l t.1 iftl t= h k- +I1
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T uI  T u

The last inequality in (3.2) follows from the fact that 
E gk = 2

k- ik k=l k i
i=1,2, ....I. The conclusion that can be drawn from (Al.I) is that the

optimal value of problem (P I) is not higher than the value of the objec-

tive function of problem (Pu 2) for any feasible solution in (Pu 2 ) that is,
uI U2

z <z

Theorem 3.1 indicates that any two feasible disaggregation procedures

are not necessarily comparable in terms of total aggregate production costs.

It is important to note however that the optimal value zu of (PU) used to

compare disaggregation schemes is a proxy for the total production cost of

the hierarchical method.

I
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APPENDIX 2: PROOF OF THEOREM 3.2

Theorem 3.2: Let uE denote the EROT disaggregation procedure. Then, if

all disaggregations are made with the EROT disaggregation method, if

I > 0 for all product types, and if the aggregate product type 3robler

(PO) is feasible it follows that
' E

o t EZ Z

b
Proof: Every summation Y with b < a is defined as being zero. Lt uE

tza
denote the EROT disaggregation procedure and assume that all disaggrenations

are made using this method. Let I ? 0, i=l,2,...,l, be the init4 rn-

tory of product type i before the computations of the effective derani-.

Recall that safety stocks are not included in the I o for i=1,2,..., T .

Denote by dit the real demand of product type i in time period t for

i=l,2,...,I and t=l,2,...,T. Since the EROT disaggregation procedure is being

used each inventory Iio will last for R(i) periods where

r(i) _

I - E dit

R(i) = r(i) + t=l 1=1,2,..., I (P2.1)
dir(i)+l

r(i) is the smallest nonnegative integer satisfying

r(i)+l
I o - Z dit < 0

Moreover, the product type problem (P ) that we need to solve at the begin-
u 
E

ning of period 1 is such that the git are nonnegative and satisfy for each
I UEi-I,2,...,T the condition I °ot I gtt The first term in (A2.1) is the

smallest integer less than or equal to R(i).

The EROT disaggregation method implies that for each product type

i1,2,...,I one of two following cases occur:

-i~-- ______ <-
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a) If r(i) > 1 then g dit, t=1,2,... ,r(i), and (A2.2)

r(i) _UE
0<u E <a

= io k=i ik = gir(i)+l ir(i)+l (P2.3)

b) If r(i) < 1 then I = gE < (A2.4)
io ii i

Assume that (Po) is feasible and that (X , I,R ,O) is one of its optimal

solutions. Define

uE o E 0 t t t

X, RE = R
o , oE= Oo and IE = X - E d + E giE

itR k1l ik k1ik klik

t=l,2,...,T; i=1,2,...,I. (A2.5)

To show that (X E,I E,R ,LO ) is feasible in (pu E) we still need to prove
uE

that it satisfies the mass balance constraints and that I > 0.

First we prove that the mass balance constraints hold at (X EIE, ,O U E).

uE  uE uE t-i 0 t-l t-l uE o t 0 t u
I _+ X itI E ~Xi - Edak+ E Zikx 1  - Xik + E d ik Ei
it- It it k=lk k=l ik1 L i k1l i k=l -

- 2 1-1,2,...,I; t=l,2, .. ,T. (A2.6)
it i1t

the first equality in (A2.6) follows from (A2.5).

Next, we prove that I > 0. Note that

uE to0
1) for 1< it < r(i), I = X 0, i>1,2,...,I by (A2.2)

ki

2) for t = r(i)+l

UE r(i)+l r(i)+l r(i)+l uElIr)+ E E o E + E
ir(i)+l k1 ik k-I ik k.i ss

r(i)+l 0 r(i)+l - - 10
r X E d ik

k.1 ik k- I io ir(i)+l - 0

the second equality follows from (A2.2), (A2.3), and (A2.4) since they
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r(i)+l u
imply that i = E gik;

k=l

3) for t > r(i)+l,

uE  t 0 t t uE  t t

-it Exik dik Xk - d + _-
k=1 k=1 k.1 k=l k.1

= IO  > 0. 1-1,2,..,1;
it =

the second equality follows from (A2.2), (A2.3), and (A2.4) since t-py
r(i)+I uE  UEimply that I o E R ik and hence gik 0O k=r()+2,...,T.
k=1

uE uE uE uE  u
From 1), 2), and 3) we have that (X ,I ,R ,O ) is feasible in (P E).

Therefore,

UE I T UI Ui T UE u I T-I T. E (ctx Et+h IE) + r. (r R) + E F hi t=it it it it t t i=l t=1 i t k=

I T t t t
= E [c Xit+htEiX - + E )] +

it it it ik ik ik1=1 t=l k=1 k1l k=1

T u E uE I T-I T u
+ E (rtRt +ott0 ) + E E it g E -

t=l i=l t=l k=t+ k

I T t t T
E E(c X + h (EX -Ed +1 )] + E (rR t +o tO t) +ik1 t k=1 t1

I T-I T u I T t u E
+ E Eb h E E h1 (I E EgE)

1-1 t=l h i t k-t+l ik 1i t=1 hit llo k ik

I T T
E E (ctX't+ h 1 0) + E (rR 0 +o 00) - zoi-i t-liti itt t-1 t t )  z

UE 0

hence, z < z.
uE uE

However, from corollary 3.1, z0 < z . Consequently z = z E

--..a
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